2.2 C
New York
Sunday, December 21, 2025

Buy now

Adsspot_img

James Webb finds that rocky planets could form in extreme radiation environment

It takes a particular confluence of conditions for rocky planets like Earth to form, as not all stars in the universe are conducive to planet formation. Stars give off ultraviolet light, and the hotter the star burns, the more UV light it gives off. This radiation can be so significant that it prevents planets from forming from nearby dust and gas. However, the James Webb Space Telescope recently investigated a disk around a star that seems like it could be forming rocky planets, even though nearby massive stars are pumping out huge amounts of radiation. The disk of material around the star, called a protoplanetary disk, is located in the Lobster Nebula, one of the most extreme environments in our galaxy. This region hosts massive stars that give off so much radiation that they can eat through a disk in as little as a million years, dispersing the material needed for planets to form. But the recently observed disk, named XUE 1, seems to be an exception. The researchers used James Webb’s Mid-Infrared Instrument (MIRI) to identify water, carbon monoxide, carbon dioxide, hydrogen cyanide, and acetylene in the disk. Those are some of the building blocks for rocky planets and show that the disk is similar to other planet-forming disks, despite the high amount of UV radiation. “We were surprised and excited because this is the first time that these molecules have been detected under these extreme conditions,” said one of the authors, Lars Cuijpers of Radboud University, in a statement. The problem for this disk is that there are a number of nearby massive stars, so the disk is being bombarded by UV radiation from several sources. The disk does seem to be a bit smaller than expected, but it still appears that it could be capable of forming rocky planets. That means that rocky planets could form even in very extreme environments, if this particular disk is not an outlier. “XUE 1 shows us that the conditions to form rocky planets are there, so the next step is to check how common that is,” said lead researcher María Claudia Ramírez-Tannus of the Max Planck Institute for Astronomy. “We will observe other disks in the same region to determine the frequency with which these conditions can be observed.” The research is published in The Astrophysical Journal. The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects. This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the “Cosmic Tornado” because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image. The James Webb Space Telescope is NASA’s most precise and technically proficient equipment for observing the wonders of the universe. Astronomers rely on it to unravel the deepest secrets by peaking at distant solar systems and capturing planets like those in ours. Much recently, the Webb Telescope was able to capture its first direct image of exoplanets nearly 130 light-years away from the Earth. The observatory seized images of four “giant” planets in the solar system of a distant star called HR 8799. This is a fairly young system formed roughly 30 million years ago, a timeline that dwarfs in comparison to our solar system’s 4.6 billion years of age. Our universe is host to many beautiful and fascinating objects, and we’re lucky enough to be able to view many of them using high tech instruments like the James Webb Space Telescope. A new Webb image shows a new view of the gorgeous Flame Nebula, an emission nebula located in the constellation of Orion. This nebula is a busy stellar nursery, with many new stars being formed there. But it isn’t stars which researchers were interested in when they looked to the nebula — in this case, they were studying objects called brown dwarfs. Bigger than most planets but smaller than a star, brown dwarfs are too small to sustain fusion in their cores, so they are often referred to as failed stars.

spot_img

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Stay Connected

0FansLike
0FollowersFollow
0SubscribersSubscribe
- Advertisement -spot_img

Latest Articles