3.5 C
New York
Thursday, December 25, 2025

Buy now

Adsspot_img

Los principales observatorios espaciales que exploran el universo

El futuro telescopio James Webb inició la cuenta regresiva. Cuando sea puesto en órbita en 2021, marcará el ocaso del Hubble, que durante 30 años ha impulsado la exploración espacial. Pero no son los únicos «ojos» de la humanidad en el espacio, por lo que hemos reunido los principales observatorios espaciales en funcionamiento. Los telescopios espaciales tienen la ventaja de que no sufren por las condiciones meteorológicas o la contaminación lumínica que aquejan a los observatorios terrestres. Además, su trabajo no se ve afectado por la la distorsión que genera la atmósfera, que reduce la calidad de las imágenes. El primero fue lanzado el 18 de abril de 1968 con el Kosmos 215 de la Unión Soviética, el primer observatorio espacial del mundo. Con una misión que solo se extendió por 73 días y equipado con ocho telescopios, fue usado para estudiar la radiación solar. De ahí en adelante, han sido lanzados más de 20. Los que siguen son los principales observatorios espaciales en funcionamiento. Fecha de lanzamiento: 24 de abril de 1990.
Ubicación: órbita circular alrededor de la Tierra, a 593 kilómetros sobre el nivel del mar.
Peso y dimensiones: 11 toneladas. De forma cilíndrica, con una longitud de 13.2 metros y un diámetro máximo de 4,2 metros.
Tipo de telescopio: Reflector con un espejo primario de 2.4 metros
Responsables: NASA y ESA. Conocido de forma inicial como Space Telescope (ST), debe su nombre actual al pionero de la astronomía estadounidense Edwin Hubble. Desde su puesta en órbita, el telescopio Hubble ha revolucionado la astronomía gracias a su visión privilegiada del espacio exterior. Debido a sus capacidades para observar las zonas del espectro visible (lo que ven nuestros ojos)  y ultravioleta cercano, los científicos lo han usado para observar algunas de las estrellas y galaxias más distantes, así como los planetas del Sistema Solar.  Ha realizado más de 1.4 millones de observaciones y se han publicado más de 18,000 artículos científicos a partir de sus hallazgos, entre los que destacan la colisión de un cometa con Júpiter y las lunas alrededor de Plutón. Fecha de lanzamiento: 23 de julio de 1999.
Ubicación: órbita elíptica alrededor de la Tierra, lo que le permite alcanzar una altitud de 139,000 kilómetros (86.500 millas), más de un tercio de la distancia a la Luna.
Peso y dimensiones: 10.5 toneladas. De forma cilíndrica, con una longitud de 13.8 metros.
Tipo de telescopio: Wolter, con un lente primario de 1.2 metros
Responsables: NASA. Chandra fue el tercero de los grandes observatorios espaciales de la NASA, después del Hubble (1990) y el Observatorio de Rayos Gamma Compton, desintegrado en 2000. Destinado a observar rayos X blandos, ha sido usado para el estudio de galaxias lejanas. Entre sus principales hallazgos, se encuentran la primera imagen de luz del remanente de la supernova Cassiopeia A; un anillo nunca antes visto alrededor del púlsar central en la nebulosa del Cangrejo, otro remanente de supernova; y la primera emisión de rayos X fue vista desde el agujero negro Sagitario A. Fecha de lanzamiento: 2 de diciembre de 1995.
Ubicación: Alrededor del punto L1 entre el Sol y la Tierra.
Peso y dimensiones: 4 toneladas. 4.3 metros de ancho, 3.7 metros de largo y 2.7 metros de alto.
Tipo: sonda espacial con doce instrumentos.
Responsables: NASA y ESA. La sonda espacial SOHO es un observatorio solar que se utiliza para el estudio de la corona solar y las zonas magnéticas. Además de su misión científica, se ha transformado en una fuente clave de datos solares en tiempo real para predecir el clima espacial. Es una de las cuatro naves espaciales –junto a Wind, ACE y DSCOVR- ubicadas en las proximidades del punto L1 Tierra-Sol, un punto de equilibrio gravitacional ubicado aproximadamente a 0.99 unidades astronómicas (AU) del Sol y 0.01 AU de la Tierra. SOHO está equipada con doce instrumentos que pueden trabajar de forma independiente, una de sus principales contribuciones ha sido el descubrimiento de más de 3,000 cometas. De hecho, más de la mitad de los cometas conocidos han sido identificados gracias este observatorio solar. Fecha de lanzamiento: 12 de octubre de 2002.
Ubicación: órbita elíptica, a una distancia mínima (periastro) de 9,000 kilómetros de la Tierra.
Peso y dimensiones: 4.4 toneladas. 5 metros de ancho, 2.8 de largo y 3.2 de alto.
Tipo: Lente principal de aberturas codificadas de 3.7 metros.
Responsables: ESA.
Considerado el observatorio de rayos gamma más sensible, tiene como misión detectar de la radiación energética que proviene del espacio. Es el primer observatorio capaz de captar de forma simultánea un objeto en rayos gamma, rayos x y espectro visible. Sus principales objetivos son las explosiones violentas conocidas como estallidos de rayos gamma, fenómenos como explosiones de supernovas y regiones del Universo que se cree que contienen agujeros negros. Según ESA, desde su puesta en órbita ha impulsado grandes avances en la comprensión del universo de rayos gamma. Durante muchos años, en la astronomía se tenía la idea de que el polvo cósmico era un impedimento para ver objetos de importancia real. Sin embargo, gracias a estudios recientes sabemos la importancia que juega el polvo cósmico en la formación de estrellas y planetas, e incluso, en la creación de nuevas moléculas en el espacio. Ahora, una nueva imagen captada por el telescopio Hubble muestra una gigantesca nube de polvo cósmico y gas ubicada cerca de la Nebulosa Tarántula, ubicada a 160,000 años luz de distancia. Los astrónomos han descubierto un monstruo verdaderamente antiguo: un chorro de radio de 200.000 años luz de ancho, que se originó cuando el universo tenía menos del 10% de su edad actual. Observado con los telescopios Gemini Norte y Hubble, los astrónomos están estudiando el chorro para aprender sobre cómo los enormes agujeros negros emiten enormes cantidades de energía y cómo se formaron en el universo primitivo.
El chorro, llamado J1601+3102, tiene dos puntos, o lóbulos, que se extienden desde un punto central y cubren un ancho dos veces el tamaño de toda nuestra galaxia. Eso lo convierte en el chorro de radio más grande jamás visto en el universo primitivo, y en su centro hay un objeto llamado cuásar: el centro muy brillante de una galaxia, también llamado núcleo galáctico activo (AGN), que contiene un agujero negro supermasivo en su corazón.
“Estábamos buscando cuásares con fuertes chorros de radio en el universo temprano, lo que nos ayuda a comprender cómo y cuándo se forman los primeros chorros y cómo impactan en la evolución de las galaxias”, explicó la investigadora principal, Anniek Gloudemans, de NOIRLab de la Fundación Nacional de Ciencias.
Los investigadores descubrieron que el chorro se formó cuando el universo tenía menos de 1.200 millones de años, y como referencia, el universo tiene alrededor de 13.800 millones de años ahora. Si bien se podría pensar que se necesitaría un enorme agujero negro para formar un enorme chorro, ese no parece ser el caso. El agujero negro justo en el centro de este chorro es más pequeño en comparación con otros cuásares.
“Curiosamente, el cuásar que alimenta este enorme chorro de radio no tiene una masa de agujero negro extrema en comparación con otros cuásares”, dijo Gloudemans. “Esto parece indicar que no necesariamente se necesita un agujero negro excepcionalmente masivo o una tasa de acreción para generar chorros tan poderosos en el universo temprano”.
Los investigadores no están seguros de por qué este agujero negro relativamente pequeño fue capaz de producir un chorro tan grande, o por qué otros agujeros negros similares no crean enormes chorros propios. También es raro ver chorros muy grandes en el universo temprano, por lo que quieren buscar más información sobre cuándo se formaron los primeros chorros.
A pesar de que es enorme, el chorro recientemente descubierto está muy lejos, por lo que los investigadores tuvieron que usar datos de telescopios terrestres y telescopios espaciales para estudiarlo. “Es solo porque este objeto es tan extremo que podemos observarlo desde la Tierra, a pesar de que está muy lejos”, dijo Gloudemans. “Este objeto muestra lo que podemos descubrir combinando la potencia de múltiples telescopios que operan en diferentes longitudes de onda”.
La investigación se publica en The Astrophysical Journal Letters.

spot_img

Related Articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Stay Connected

0FansLike
0FollowersFollow
0SubscribersSubscribe
- Advertisement -spot_img

Latest Articles